Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Acer(Sapindaceae) is a major genus of broadleaf trees dominating deciduous forests in the Northern Hemisphere, with Asia exhibiting the highest species diversity. Many economically importantAcerspecies are cultivated for ornamental or timber purposes.Acerpowdery mildew, caused by fungi in the tribeCystotheceae, poses significant global economic and ecological threats. The pathogenicity spectrum remains unclear due to taxonomic uncertainties in its primary causal genera,SawadaeaandTakamatsuella. This study presents a comprehensive phylogenetic-taxonomic analysis of the two genera across East Asia, Europe, and North America. Using 75 ITS and 58 28S rDNA newly obtained sequences, we resolved 12Sawadaeaspecies and oneTakamatsuellaspecies into nine monophyletic clades, revealing marked cryptic diversity (three new species:S. acerina,S. aceris-arguti,S. taii) and two paraphyletic groups (S. bifida/S. negundinis). Taxonomic revisions include:S. bicornissplit into twoformae(f. bicornisandf. polyphaga f. nov.) with distinct host preferences;S. tulasnei(sensu stricto) restricted to Europe/North America, invalidating previous Asian records;S. nankinensisandS. koelreuteriaeform two basal lineages. Phylogenetic positioning confirmedTakamatsuellaas a distinct genus sister toSawadaea, supported by an ITS1 26 bp deletion. Host specificity analysis revealed narrow host ranges (primarilyAcer) with two evolutionary host expansions toKoelreuteria,Aesculus, andLiquidambar. This study also newly describes the asexual morphs of four species (S. aesculi,S. bifida,S. bomiensisandS. kovaliana) and establishes a molecular framework for disease management through clarified phylogeny and taxonomy. Our findings provide critical insights into fungal evolution, host-pathogen interactions, and strategies for mitigating powdery mildew impacts in forest ecosystems.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Ascomycota, the most speciose phylum of fungi, is a complex entity, comprising three diversesubphyla: Pezizomycotina, Saccharomycotina, and Taphrinomycotina. The largest and most diversesubphylum, Pezizomycotina, is a rich tapestry of 16 classes and 171 orders. Saccharomycotina, thesecond largest subphylum, is a diverse collection of seven classes and 12 orders, whileTaphrinomycotina, the smallest, is a unique assembly of six classes and six orders. Over the pastdecade, numerous taxonomic studies have focused on the generic, family, and class classifications ofAscomycota. These efforts, well-documented across various databases, are crucial for acomprehensive understanding of the classification. However, the study of taxonomy at the ordinallevel, a crucial tier in the taxonomic hierarchy, has been largely overlooked. In a global collaborationwith mycologists and lichenologists, this study presents the first comprehensive information on theorders within Pezizomycotina and Taphrinomycotina. The recent taxonomic classification ofSaccharomycotina has led to the exclusion of this subphylum from the present study, as an immediaterevision is not necessary. Each order is thoroughly discussed, highlighting its historical significance,current status, key identification characteristics, evolutionary relationships, ecological and economicroles, future recommendations, and updated family-level classification. Teaching diagrams for thelife cycles of several orders, viz. Asterinales, Helotiales, Hypocreales, Laboulbeniales, Meliolales,Mycosphaerellales, Ophiostomatales, Pezizales, Pleosporales, Phyllachorales, Rhytismatales,Sordariales, Venturiales, Xylariales (Pezizomycotina) and Pneumocystidales,Schizosaccharomycetales and Taphrinales (Taphrinomycotina) are provided. Each diagram is explained with a representative genus/genera of their sexual and asexual cycles of each order. WithinPezizomycotina, Dothideomycetes contains the highest number of orders, with 57, followed bySordariomycetes (52 orders), Lecanoromycetes (21 orders), Eurotiomycetes and Leotiomycetes (12orders each), Laboulbeniomycetes (3 orders), and Arthoniomycetes and Xylonomycetes (2 orderseach). Candelariomycetes, Coniocybomycetes, Geoglossomycetes, Lichinomycetes, Orbiliomycetes,Pezizomycetes, Sareomycetes, and Xylobotryomycetes each contain a single order, whileThelocarpales and Vezdaeales are treated as incertae sedis within Pezizomycotina. Notably, theclasses Candelariomycetes, Coniocybomycetes, Geoglossomycetes, Sareomycetes, andXylonomycetes, all recently grouped under Lichinomycetes, are treated as separate classes based onphylogenetic analysis and current literature. Within Lecanoromycetes, the synonymization ofSporastatiales with Rhizocarpales and Sarrameanales with Schaereriales is not supported in thephylogenetic analysis. These orders are retained separately, and the justifications are provided undereach section as well as in the discussion. Within Leotiomycetes, the order Medeolariales, which wasonce considered part of Helotiales, is treated as a distinct order based on phylogenetic evidence. Theclassification of Medeolariales may change as more data becomes available from different generegions. Lahmiales (Leotiomycetes) is not included in the phylogenetic analysis due to a lack ofmolecular data. Sareomycetes and Xylonomycetes are treated as separate classes. Spathulosporamixed with Lulworthiales and the inclusion of Spathulosporales within Lulworthiomycetidae issupported and extant molecular sampling is important to resolve the phylogenetic boundaries ofmembers of this subclass. The majority of the classes of Pezizomycotina and Taphrinomycotinaformed monophyletic clades in the phylogenetic analysis conducted based on SSU, LSU, 5.8S, TEFand RPB2 sequence data. However, Arthoniomycetes nested with the basal lineage ofDothideomycetes and formed a monophyletic clade also known as the superclass, Dothideomyceta.In Taphrinomycotina, a single order is accepted within each class.more » « lessFree, publicly-accessible full text available May 18, 2026
An official website of the United States government
